Programming
Rubber Band Reports

with Pivot Tables

Hector Correa
hector@hectorcorrea.com

Introduction to Excel’s Pivot Tables
Brief introduction to Excel’s Pivot Tables

An Excel’s pivot table is a special type of Excel table where you can rotate rows and
columns to view data from different perspectives. The use of pivot tables is because they allow
you to summarize large amounts of data by just dragging and dropping fields into the pivot
table’s rows and columns'.

In its simplest form, a pivot table looks like the one depicted in the following picture. As
you can see, a pivot table is composed of four basic elements: rows fields, columns fields, data
items and page fields.

e T R iR

00 el |00 (R

The following picture shows a pivot table with data coming from the TestData database
that ships with VFP 7.

! Unless otherwise noted, the term pivot table in this document refers to Excel’s pivot tables.
2 Notice that this data is not the same as TasTrade database that is also shipped with VFP. TestData database
contains the same information as Northwind database that ships with SQL Server.

|l A B i F (& H
1 4

5] | |

3 4

4 Sales country]

| vearmonth w|Canada ltaly Mexico LSA Grand Total

B | 19596/ 4 17315 755 1196 13004.43| 16656.93

ﬂ 19596/ 5 BDDJI.BI 1504 BE0. 35007 95| 4137675

8 | Grand Total 47363 2559 1856 48912.38| 58053 E3

9

0
11 BivotTable » | HEWE 2= ! E

E [Commpary’ region courtry order_d... yearfmo...

1-4 | employee product quantity linetat. ..

15

16

In this example, you can see sales by year/month and country. Notice how fields in row
and column headers are, in fact, drop-down controls. This means that when you click on them, a
drop down list pops up enabling you to select the values that you want to show (filter) in the
pivot table. In this particular case, I selected only the months of April and May in 1996 for four
countries. A copy of the Excel file with this pivot table can be found in file
PT TESTDATA.XLS.

One of the most exciting features of pivot tables is that they are dynamic. This means
that you can rearrange the fields displayed as rows, columns and data items to get different views
of the same data. For example, the following picture shows the same data as the previous
picture. However, in this case I dragged the employee field to the rows area. Notice how the
pivot table automatically broke down information by employee.

Another interesting feature of pivot tables is their drill-down capability. You can double-
click on any particular cell and Excel shows the specific records that are behind the summary

A E = F e H

1 4

2] |

)|

4 | Sales country |

& | vearfmonth = lemployee |Canada ltaly Mexico LISA, Grand Total

5] 19967 4 Davolio, Mancy 7175 110 1196 15879.35 3902 85
ﬂ Fuller, Andrew 10148 G45 15871.5 35305

8 Leverling, Janet I 4928.55 4928 48

g | Peacock, Margaret 3477 3477

10 | Suyama, Michael S48 8458

11 19967 4 Total 1731.5 755 1196 13004.43| 16686593

124 19967 5 Callahan, Laura A54.4 554 .4

13 Davalio, Mancy 1170.3 360 B096.9 TE2T 2

14 | Fuller, Andrew 266 300 59025 Q468 .5

15| King, Robet

e S T TIEEIEICT

18 | 1996/ 5 Total COMmparny region country order_d... wearfma. ..

;g ! Grand Total employes product quankiky limetak. ..

21| -

o]

value displayed on the pivot table. For example, double-clicking on row 1996/4, Andrew Fuller
for column Canada shows details of the two sales that make up the 1014 dollars shon in the
pivot table.

A& I e L F I G [T |
i Company regiﬂn : COuRiny “order_date 'pearr'nnnth' Emp'l'nyen [pruﬂum 'qua'l'ﬂiiyull'n etotal
2 (Bottom-Dollar Markets BGC Canada 471311996 1996/4 Fuller, Andrew Malaysian Coflae 31 M4
3 |Bottorn-Dollar Markets BC Canada 47130956 1996/ 4 Fuller, Andrew Uncle Bob's Organic Dried Pears A E00
4

There are several other goodies that come along with pivot tables. For example, you can
create pivot charts. These charts are associated with the pivot table and you can filter the
information that is charted just as you can with the pivot table (i.e. via drop down lists). You can
also create calculated fields (e.g. sums, counts, averages) in your pivot table. In addition, you can
format your pivot tables to give them a professional look and feel by using a variety of built-in
styles that come with Excel’.

Even though pivot tables are very flexible and powerful, you might still wonder why you
would look at Excel’s capabilities to deliver your reports rather than using Visual FoxPro report
writer or any of the third party reporting tools that are available. There are two strong reasons
that make pivot tables a better candidate than other technologies to deliver reports to users.

First, most people already have Excel and know how to use it*. Allowing your users to
create dynamic reports with a tool that they feel confident with is something that they will
certainly appreciate.

Secondly, since pivot tables are so dynamic, users can customize their own reports by
just dragging and dropping fields. They can drill down to any the level of detail that they need to
by double-clicking on cells. Additionally, they can create charts by using one of the most well
known chart engines available for end-users. The bottom line is that there is a significant
reduction on the turn-around time to create reports and an increased flexibility in being able to
represent and analyze data.

Programming Excel’s Pivot Tables with Visual FoxPro

There are basically two ways of creating pivot tables in Excel. The first way is using
Excel interactively. To do this, use the Pivot Table Wizard option that is on the Data pad in
Excel’s main menu. The second mechanism to create pivot tables is programmatically via OLE-
Automation. This is the mechanism that I will describe in this document’.

* There are plenty of books out there that describe how to use these and other features of pivot tables. In general, any
decent book on Excel will have a chapter dedicated to pivot tables and pivot charts where you can find more
information on how to format pivot tables for nice and elegant presentations.

“ Bellmer, Tom.

> Although T will not elaborate on the interactive way of creating pivot tables, I highly encourage you to give it a try
before you dive into details on how to create them programmatically. This will be particularly useful if you have never
played with pivot tables before. You can use the PT TESTDATA.XLS file to do this exercise.

Before we dig into the details on how to create a pivot table programmatically, let us first
take a look at the general process involved on creating a pivot table. This process can be divided
into three basic steps:

1. First, you take some data stored in a normalized format and create a temporary
table with a de-normalized (flat file) version of this information.

2. Second, you submit this de-normalized data to Excel and create a pivot table.

3. Third, once the pivot table has been created, you (or your end-users) only need to
deal with the Excel file that you created. From that point on, you (or your end-
users) do not need to be connected to either the normalized database or the de-
normalized table.

The following picture depicts this process:

4

e
Fat

VFP, SQL End users
and/or Oracle

Step 1. From normalized to de-normalized data

In well-designed systems, data is stored in normalized tables. In order to create a pivot
table, you need to first create a de-normalized version of your database. Although this de-
normalization might sound a little bit inefficient, the fact is that any reporting tool (including
VFP’s Report Writer) requires this de-normalized data to be created either implicitly or
explicitly.

Let us say, for example, that you have a database like the one depicted in the next
diagram. This is a diagram of the TestData database that ships with VFP 7.

Fields - cust_id L

cust_id emp_id

COMpaty to_name

contact to_address

title: to_city

address T to_region

city postalcode -

region to_cauntry . DO

postalcode: ship_count B3 Fields: .]
last_name __| ounty = ship_via product_id
first_name arder_date prod_name
litle: order_amt BN0_hame

birth_date
hire_date o

order_dsc no_in_unit
order_net urit price ¥

require_by

shipped_on =R orditems.
freight Fields:
[Elindexes: line_ho
cust_id order_id
emp_id | product_jd
Forder_id - urit_price
quantity
[ElIndexes:
order_id
product_id

The process to create a de-normalized table is usually pretty straightforward. You start by
identifying all fields from all tables that you would like to include in the pivot table. For
example, if you want to show information by customer, then you need to include the customer
name (customer.company) in this de-normalized table. Likewise, if you want to display
information by employee, then you need to include the name of the employee
(employee.first name) associated with each record. For the most part, you need to bring all
descriptive names to the de-normalized table and omit primary keys.

Once you have identified what information you want to include in the pivot table, you
then write a program in VFP to pull down this information and store it in a VFP table. The
following fragment of code shows how you can create a de-normalized table for the tables
depicted before®:

select customer.company, ;
customer.region, ;
customer.country, ;
orders.order date, ;
employee.last name as employeelast, ;
products.eng name as "product", ;
orditems.quantity, ;
orditems.quantity * orditems.unit price as linetotal;
from customer ;
inner join orders on customer.cust id = orders.cust id ;
inner join employee on orders.emp id = employee.emp id ;
inner join orditems on orders.order id = orditems.order id ;

inner join products on orditems.product id = products.p?oduct_id ;
into table data\pt testdata

The following picture shows a fragment of the data that will be generated with the
previous SQL statement. Notice how fields like company name, employee and product fields are
now de-normalized.

mPttedeia S =/ 1}
Company Region | Country | Order_date Employee Quantity | Linetotal Product L‘_'

Ernst Handel Auystria 108/07/1993 iKing, Fobert 5.000 75.0000:Flotermys Cream Cheese ||
Lamaison d'Asie France 08101993 :Dawolio, Mancy 40.000 280.0000:5ir Rodney's Scones
Lamaison d'Asie France 081041993 Dawvolio, Mancy 15.000 210.0000:Licarice
La maison d'Asie France 1081001993 Dawolio, Mancy 20.000 226.0000 Mhite Chocolate
La maison d'Asie France i08/10/1993 Dawvolio, Mancy 4.000 104.0000: Gramma Alice's Durnpling
Toms Spezialitaten Germany (08/11/1993 iLeverling, Janet 20.000 266.0000:Fickled Herring
Toms Spezialitaten Germarny 108/11/1993 Leverding, Janet 10.000 60.0000:Jack's Mew England Clam
Toms Spezialitaten Germany (08/11/1993 iLeverling, Janet 3.000 45.0000 :Flotermnys Cream Cheese

Rattlesnake Caryon Grocery (N IS A 08/12/1993 Peacock, Margaret 10.000 320.0000:Malaysian Coffes
Rattlesnake Canyon Grocery MM US4, 08/12/1993 :FPeacock, Margaret 15.000 343 5000:Ferth Meat Fies
Rattlesnake Caron Grocery (M S A 08/12/1993 Peacock Margaret 50.000 1560.0000: Gramrma Alice's Durnpling
Rattlesnake Canyon Grocery ik IUSA, 08/14/1993 Peacock, Margaret 10.000 122.0000:Faviova Meringue Desser

Rattlesnake Canyon Grocery (M 5A 08/14/1993 Peacack Margaret 2.000 £3.8000:Rassle Sauerkraut
horgenstern Gesundkost Germany {08/17/1893 Buchanan, Steven 2.000 17.4000 : Scotish Longbreads
M |Ernst Handel 08/18/1993 King. Robert 40.000 268.0000; Jack's Mew England Clard
EmstHandel 08/18/1993 :King, Robert 50.000 1150.0000:Fierrot Camembert |
rhart Handnl neManaga Kinm Brobort Annnn Q28 NNNN A rrranr's Dalicinoe Brose it
1 3

¢ Complete code can be found in the GETDATA PRG file.

In the previous example, to create the de-normalized table a single SQL Select statement
was required. In real life applications, however, the process can be more involved and require
several SQL Select statements (potentially from several databases) plus a series of steps to
massage the information until it has all the information that we will eventually need in the pivot
table. Given VFP’s data manipulation capabilities, it is easy to see why VFP is such a good fit
for this particular duty.

Keep in mind that, although the de-normalized table will be a VFP table, this does not
mean that the source data needs to be VFP data. You can use VFP to pull data from a variety of
databases (e.g. SQL Server or Oracle) via SQL Pass Through or remote views.

There are some other routes that you can take to create this de-normalized table and
some of them are even more powerful than the technique that is used in this document. A
common mechanism to accomplish this task is via On Line Analytical Processing (OLAP)
packages like the one that comes built-in in SQL Server. These mechanisms are beyond the
scope of this document. If you are interested in them, you should take a look at Val Matison’s
white paper listed at the end of this document. Nevertheless, you should keep in mind that when
you move to OLAP packages you not only increase pivot tables capabilities, but also the price
and complexity of the solution.

Step 2. Creating the Pivot Table
Once you have your data de-normalized there are basically two methods that you can
follow to create the pivot table.

One option is to copy your data to a sheet within an Excel workbook and then create the
pivot table using this data. Although this approach works well in a majority of cases, it comes
with a significant limitation: you can only import 65,000 records to an Excel spreadsheet. An
example on how to create a pivot table using this approach can be found in the program,
CREATEPTI1.PRG

The other option that you can follow is to create a pivot table from an external data
source (rather than from an Excel spreadsheet.) In this case, you ask Excel to read the data from
a VFP table via ODBC or OLE-DB. Excel in turn reads this data to an internal cache (but it does
not display it in a sheet) and then creates the pivot table. This is the technique that is used in this
document.

It is very easy to create an Excel’s pivot table from within VFP. Basically, you just need
to use OLE-Automation to instruct Excel to create a pivot table for you. The following code
fragment shows how to create a pivot table programmatically’.

* 1. Launch Excel via OLE-Automation.
oExcel = createobject ("excel.application")
oExcel.Application.Visible = .T.

* 2. Create a new workbook.
oWorkbook = oExcel.Workbooks.Add ()

* 3. Define an Excel range object to dump the results into.

7 Complete code for this example can be found in the CREATEPT2.PRG file.

oTargetSheet = oWorkbook.Sheets.Add ()
oTargetRange = oTargetSheet.range ("A2")

* 4, Define ODBC connection string and SQL statement
* that Excel will use to read data.
dimension aSource([2]

aSource[l] = "Driver={Microsoft Visual FoxPro Driver};" +;
"SourceDB=" + DATAPATH + ";" +;
"SourceType=DBF;"

aSource([2] = "select * from pt testdata"

* 5. Create a pivot table object.

oPivotTable = oExcel.Sheets[1l].PivotTableWizard(2,; && external data.
@aSource, ;
oTargetRange, ;
"PivotTable", .T., .T.)

* 6. Define how data would initially be arranged in the pivot table.
oPivotTable.PivotFields ("country") .orientation = 1 && row
oPivotTable.PivotFields ("yearmonth") .orientation = 2 && column
oPivotTable.PivotFields ("linetotal"”) .orientation = 4 && data

Notice how in step 5 we are using an Excel method called PivotTableWizard® to create
the pivot table. Parameter aSource indicates to Excel to read data using the ODBC’ connection
and SQL statements that we defined in step 4.

Although pivot table wizard simplifies the process of creating a pivot table, it does not let
you see how Excel organizes pivot tables internally. The following picture'® shows the main
objects used by Excel to handle pivot tables.

|Application . .~ = @
Waorkbooksz [workbook] |

4 Workzheets (worksheet] |
L{Pivun ables [PivotT able) |

{PivotCache |

ﬂ PivotFormulas [PivotFormula) |

— PivolFields [PivotField) |

Pivotltems [Pivotltem] |

 CubeFields (CubeField) | Eegend
| [:] Chject and collection
Ohject only

4 PivotCaches [PivotCache]

¥ Although this method is called PivotTableWizard, it is not a wizard that will prompt the user to follow certain steps.
It is called a wizard because it automates some of the steps required to create the pivot table and shields the
developer from some of the internal classes that Excel uses to create and handle the pivot table.

? PivotTableWizard only knows how to use ODBC to read data from external data sources. It does not support OLE-
DB providers.

1 Microsoft Excel Visual Basic Reference help file.

In order for Excel to create a pivot table, it first reads data to an internal (and invisible)
object called PivotCache. The actual visible part of the pivot table is the PivotTable object.
Inside the pivot table there are PivotFields objects (that represent fields stored in the data source)
and PivotFormulas objects (that can be used to represent calculated fields.)

Let us look at an example on how to create a pivot table by directly manipulating Excel’s
pivot table and pivot cache objects rather than using the PivotTableWizard method'".

* 1. Launch Excel via OLE-Automation.
oExcel = createobject ("excel.application")
oExcel.Application.Visible = .T.

* 2. Create a new workbook.
oWorkbook = oExcel.Workbooks.Add ()

* 3. Define an Excel range object to dump the results into.
oTargetSheet = oWorkbook.Sheets.Add()
oTargetRange = oTargetSheet.range ("A2")

* 4. Create a pivot cache object.
oPivotCache = oWorkbook.PivotCaches.Add(2) && external data

* 5. Tell this pivot cache the OLE-DB provider and SQL statement

* that Excel will use to read data.

oPivotCache.Connection = "OLEDB;Provider=vfpoledb.l;data source=" + DATAPATH
oPivotCache.Commandtext = "select * from pt testdata"

* 6. Ask the pivot cache object to create a pivot table
* with the data.
oPivotTable = oPivotCache.CreatePivotTable(oTargetRange, "PivotTable")

* 7. Define how data would initially be arranged in the pivot table.

oPivotTable.PivotFields ("country") .orientation =1 && row
oPivotTable.PivotFields ("yearmonth") .orientation = 2 && column
oPivotTable.PivotFields ("linetotal") .orientation = 4 && data

The first three steps in this example are identical to the previous example. However, in steps
4 through 6 we are manually creating the pivot cache and pivot table objects rather than using
the pivot table wizard. By doing this we now can ask Excel to read data using an OLE-DB
provider rather than ODBC.

Although the use of an OLE-DB provider over an ODBC driver might not seem as an
imminent advantage, it is certainly a much better strategy when you consider that this prevents
Excel altogether from attempting to use Microsoft Query to read data into the PivotCache.
Microsoft Query is an additional component that not all Excel users have installed and that is
somehow difficult to configure programmatically'.

" Complete code for this example can be found in the CREATEPT3.PRG file.
2 Tamar, Granor and Martin, Della. Page. 189.

Step 3. Using the Pivot Table.

Once the pivot table has been created and stored in an Excel file, it is up to you to decide
what you do with the Excel file. You can e-mail the Excel file to your users or post it to a shared
location where they can access it. Remember that once the pivot table has been created, your
users will not need your copy of the de-normalized data anymore since Excel saves its own copy
of the data as part of the PivotCache object.

In addition, since data is stored internally in the Excel file, users still have drill-down
capabilities when using the pivot table even though they are neither connected to the live
database nor the de-normalized table! As you can see, deployment is reduced to delivering a
single Excel file to the users.

You can add some extra functionality to the Excel file by using Visual Basic for
Applications (VBA). For example, you can create forms (Microsoft Forms) inside Excel files
with command buttons and checkboxes. This topic is out of the scope of this document, but there
are plenty of books on this topic.

Paving the way

Included with this white paper, there is a set of classes'” that encapsulate access to
Excel’s pivot tables. The following picture shows the class hierarchy of these classes. The only
class that you need to instanciate is PivotTable. This class will automatically call the other
classes.

+E xcel97 Wrap per
+PivotT able +ExceMfrapp er
-0ExceWrappar #cExcelClass
-cSourceDBF iESHCEI oar
- ource
_E;iﬁiz{lﬁ- +Excel2000Wrapper #cTargetdLS
-cTargetSheet | - > > E_?Durces}t{hLT
-cTargetRange argetsheet
Hreatel) #tEargetRange
+SetField() :-IC _tr(rgnr
+3ave ni
s +CreatePivotTable()
+5etPivaotField()
+E xcel2002Wrap per

The following fragment of code shows how to use the PivotTable class to create a pivot
table for a VFP table called PT_TESTDATA.DBF

oPT = createobject ("pivottable")
OPT.cSourceDBF = "c:\efox pivot\data\pt testdata.dbf"
OPT.cTargetXLS = "c:\efox pivot\data\pt testdata.xls"

¥ Code for these classes can be found in the PTCLASS.PRG file. Samples of usage can be found in the
PTSAMPLES.PRG file.

oPT.Create ()

oPT.SetField("country", "row")
oPT.SetField("yearmonth", "column")
OPT.SetField("linetotal", "data")
oPT.Save ()

As you can see, this class simplifies the process of creating the pivot table quite a lot
since now you don’t need to deal with Excel directly, but rather with a much simpler interface.
Source code for this class is provided so you can extend it and adapt it to your particular needs.

Excel’s Pivot Tables and Your Users
Advantages of Using Pivot Tables

Pivot tables are a powerful tool that you can provide to your users to help them analyze
data from multiple angles. One of the benefits of them is that, since most users are familiar with
Excel, training time can be reduced dramatically without sacrificing flexibility.

An additional advantage of using pivot tables is the reduction on the number of hits to the
live database by letting users query information from an offline data set. Remote and mobile
users would also appreciate offline capabilities.

Finally, by giving your users such a flexible tool, you may reduce the number of requests
for new reports that your users will make. With pivot tables, users can easily create these reports,
and even charts, themselves by simply dragging fields to rows and columns. It does not get any
easier than that.

References

e Bellmer, Tom. Using VFP 6 and Excel 2000 as a Reporting Tool. Paper delivered
at the Midwest FoxPros Users Group (May/2001.) http://visionds.net/hcorrea

e Granor, Tamar and Martin, Della. Microsoft Office Automation with Visual FoxPro.
Hentzenwerke Publishing. 2000.

e Microsoft Excel Help. File XLMAIN9.CHM that comes with MS Office 2000.

e Microsoft Excel Visual Basic Reference. File VBAXL9.CHM that comes with MS

Office 2000.

e Stearns, Dave. Programming Microsoft Office 2000 Web Components. Microsoft
Press. 1999.

e Walkenbach, John. Excel 2002 Power Programming with VBA. Hungry Minds,
Inc. 2001.

e Walkenbach, John. Microsoft Excel 2000 Power Programming with VBA. Hungry
Minds, Inc. 1999.

e Wells, Eric. Advanced Spreadsheet Programming with Microsoft Excel 97.
Microsoft Office Developer Web Forum. 1998.
http://www.eu.microsoft.com/exceldev/artcles/movs104.htm

10

