
A new frontend for VIVO

Hector Correa / hector_correa@brown.edu
Steven McCauley / steven_mccauley@brown.edu

Brown University Library



A new frontend for VIVO

Hector Correa / hector_correa@brown.edu
Steven McCauley / steven_mccauley@brown.edu

Brown University Library

Rea
d-

onl
y, 

pu
bl

ic 
us

er

^



VIVO @ Brown
In production since 2014

4000+ researcher profiles

150,000 pageviews/month (Google Analytics)



Why a new frontend?
Users have expressed 

● Not very user-friendly
● Plain/boring look and feel
● Not very functional for their needs (i.e. discovery)

Technology-wise

● Use technologies we are comfortable with (Ruby on Rails)
● Allows us to innovate faster



Current Original Web Site
No URL available as of December/2017 











New Web Site
Live since December/2017 

https://vivo.brown.edu/

https://vivo.brown.edu/












Features 
● Same information as standard VIVO
● Modern look and feel
● Optimized for discovery

○ Focus on finding researchers 
○ Affiliations, alumn of, et cetera issue searches for other researchers 
○ Faceted search (affiliation, research areas, publication venue)
○ Focus on common users' needs 
○ Tuned our Solr index, spell checker, faster response times

● Mobile friendly
● Fast performance



Examples
● Publication filter (link)
● Complete profile (link)

○ Alumni of (link)
○ Appointments (link)
○ Export to JSON-LD / Turtle via VIVO (link)



System Architecture
Developer requirements

● Decouple frontend interface from backend datastore
● Better performance
● Easier, faster updates and development
● Less complexity, more collaboration



System Architecture: original setup

Manager 
(Django App)

Data Service
(Flask App)

general public

VIVO 

Fuseki Solr 

Java App

editors

developers



System Architecture: new setup

Manager 
(Django App)

Data Service
(Flask App)

general public

VIVO 

Fuseki Solr 

Java App

editors

developers

New frontend
(Rails App)



System Architecture: application APIs
VIVO APIs

● Writing: VIVO internals 
● Querying: Fuseki
● SPARQL Query/Update APIs
● Frontend API should be simple and fast



System Architecture: frontend API
Solr as VIVO API

● Bundled with VIVO
● Highly configurable
● Built for search and speed
● Live updates
● Query via HTTP
● Delivers denormalized JSON documents

https://wiki.duraspace.org/pages/viewpage.action?pageId=55902741



System Architecture: configuration and workflow
Solr configuration

● Solr schema
● Solr integrates standalone scripts: more data processing, validation

○ https://wiki.apache.org/solr/ScriptUpdateProcessor

VIVO configuration

● rdf/display/everytime/searchIndexerConfigurationVitro.n3
● SPARQL queries against triplestore generate data for Solr fields

https://wiki.apache.org/solr/ScriptUpdateProcessor


System Architecture: SPARQL queries



System Architecture: SPARQL queries



System Architecture: SPARQL queries



System Architecture: SPARQL queries



System Architecture: Solr documents



System Architecture: VIVO as backend
● Minimal updates to VIVO installation 

○ Solr indexing configuration
○ Reassign URLs: from VIVO pages to Rails app 

● Preserve VIVO's built-in data services
○ http://.../individual/{id}/{id}.ttl (exports Turtle)
○ http://.../individual/{id}/{id}.jsonld (exports JSON-LD)
○ SPARQL Query/Update APIs

● Standalone APIs still available
○ Fuseki
○ R@B REST service

● VIVO for database administration



System Architecture: future steps
At Brown

● Move from standalone Fuseki to SPARQL Query/Update APIs
● Smarter SPARQL queries, better JSON handling
● Leverage inferencing and maintenance queries

VIVO community

● Easier configuration of Solr fields
● Focus on Solr integration, staying up-to-date with latest versions
● Development of modules that hook up to VIVO APIs



Benefits (users)
● Targets users' different needs 

○ ...mainly discovery

○ ...while preserving our Linked Data options 

● Good design makes a big difference
○ Thanks Symplectic for the inspiration in VIVO 2016
○ Thanks to our designers: Crystal Brusch and Ben Tyler

● Careful: bad data might become (more) visible



Benefits (technical)
● Familiar technologies for the team

○ Ruby on Rails 
○ Designers can run the site and see their changes locally

● Easier to update the frontend
○ Push a new release without touching the VIVO backend

● Hard division between public and not-public data 

● Keeps VIVO data capabilities intact



If you are going to customize VIVO (and you will)...

your frontend and your backend don't 

have to be the same



Future enhancements 
● Visualizations
● Built-in access to common queries 

○ e.g. who has published in the last 12 months

● Connect to other systems within the university/library
● Document how to reuse our code (Rails + Solr config) 
● Exports

○ ... of search results 
○ ...individual researcher (make more prominent)

● Organization/affiliation pages 
○ ...and others?



Source code 
● Available at https://github.com/Brown-University-Library/vivo-on-rails 

Questions?
● Contact us

○ hector_correa@brown.edu
○ steven_mccauley@brown.edu 

https://github.com/Brown-University-Library/vivo-on-rails
mailto:hector_correa@brown.edu
mailto:steven_mccauley@brown.edu


Thanks!


